Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Pangenome graphs can represent all variation between multiple reference genomes, but current approaches to build them exclude complex sequences or are based upon a single reference. In response, we developed the PanGenome Graph Builder, a pipeline for constructing pangenome graphs without bias or exclusion. The PanGenome Graph Builder uses all-to-all alignments to build a variation graph in which we can identify variation, measure conservation, detect recombination events and infer phylogenetic relationships.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Martelli, Pier Luigi (Ed.)Abstract MotivationPairwise sequence alignment remains a fundamental problem in computational biology and bioinformatics. Recent advances in genomics and sequencing technologies demand faster and scalable algorithms that can cope with the ever-increasing sequence lengths. Classical pairwise alignment algorithms based on dynamic programming are strongly limited by quadratic requirements in time and memory. The recently proposed wavefront alignment algorithm (WFA) introduced an efficient algorithm to perform exact gap-affine alignment in O(ns) time, where s is the optimal score and n is the sequence length. Notwithstanding these bounds, WFA’s O(s2) memory requirements become computationally impractical for genome-scale alignments, leading to a need for further improvement. ResultsIn this article, we present the bidirectional WFA algorithm, the first gap-affine algorithm capable of computing optimal alignments in O(s) memory while retaining WFA’s time complexity of O(ns). As a result, this work improves the lowest known memory bound O(n) to compute gap-affine alignments. In practice, our implementation never requires more than a few hundred MBs aligning noisy Oxford Nanopore Technologies reads up to 1 Mbp long while maintaining competitive execution times. Availability and implementationAll code is publicly available at https://github.com/smarco/BiWFA-paper. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
- 
            Millions of species are currently being sequenced, and their genomes are being compared. Many of them have more complex genomes than model systems and raise novel challenges for genome alignment. Widely used local alignment strategies often produce limited or incongruous results when applied to genomes with dispersed repeats, long indels, and highly diverse sequences. Moreover, alignment using many-to-many or reciprocal best hit approaches conflicts with well-studied patterns between species with different rounds of whole-genome duplication. Here, we introduce Anchored Wavefront alignment (AnchorWave), which performs whole-genome duplication–informed collinear anchor identification between genomes and performs base pair–resolved global alignment for collinear blocks using a two-piece affine gap cost strategy. This strategy enables AnchorWave to precisely identify multikilobase indels generated by transposable element (TE) presence/absence variants (PAVs). When aligning two maize genomes, AnchorWave successfully recalled 87% of previously reported TE PAVs. By contrast, other genome alignment tools showed low power for TE PAV recall. AnchorWave precisely aligns up to three times more of the genome as position matches or indels than the closest competitive approach when comparing diverse genomes. Moreover, AnchorWave recalls transcription factor–binding sites at a rate of 1.05- to 74.85-fold higher than other tools with significantly lower false-positive alignments. AnchorWave complements available genome alignment tools by showing obvious improvement when applied to genomes with dispersed repeats, active TEs, high sequence diversity, and whole-genome duplication variation.more » « less
- 
            Abstract Pangenome graphs can represent all variation between multiple genomes, but existing methods for constructing them are biased due to reference-guided approaches. In response, we have developed PanGenome Graph Builder (PGGB), a reference-free pipeline for constructing unbi-ased pangenome graphs. PGGB uses all-to-all whole-genome alignments and learned graph embeddings to build and iteratively refine a model in which we can identify variation, measure conservation, detect recombination events, and infer phylogenetic relationships.more » « less
- 
            Abstract The short arms of the human acrocentric chromosomes 13, 14, 15, 21 and 22 (SAACs) share large homologous regions, including ribosomal DNA repeats and extended segmental duplications 1,2 . Although the resolution of these regions in the first complete assembly of a human genome—the Telomere-to-Telomere Consortium’s CHM13 assembly (T2T-CHM13)—provided a model of their homology 3 , it remained unclear whether these patterns were ancestral or maintained by ongoing recombination exchange. Here we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologous sequences. Utilizing an all-to-all comparison of the human pangenome from the Human Pangenome Reference Consortium 4 (HPRC), we find that contigs from all of the SAACs form a community. A variation graph 5 constructed from centromere-spanning acrocentric contigs indicates the presence of regions in which most contigs appear nearly identical between heterologous acrocentric chromosomes in T2T-CHM13. Except on chromosome 15, we observe faster decay of linkage disequilibrium in the pseudo-homologous regions than in the corresponding short and long arms, indicating higher rates of recombination 6,7 . The pseudo-homologous regions include sequences that have previously been shown to lie at the breakpoint of Robertsonian translocations 8 , and their arrangement is compatible with crossover in inverted duplications on chromosomes 13, 14 and 21. The ubiquity of signals of recombination between heterologous acrocentric chromosomes seen in the HPRC draft pangenome suggests that these shared sequences form the basis for recurrent Robertsonian translocations, providing sequence and population-based confirmation of hypotheses first developed from cytogenetic studies 50 years ago 9 .more » « less
- 
            Abstract Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals 1 . These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
